Topics in Number Theory

Introduction to Iwasawa Theory

David Burns

Giving a one-lecture-introduction to Iwasawa theory is an unpossibly difficult task as this requires to give a survey of more than 150 years of development in mathematics. Moreover, Iwasawa theory is a comparatively technical subject. We abuse this as an excuse for missing out the one or other detail.

8.1 The analytic class number formula

We start our journey with 19th-century-mathematics. The reader might also want to consult his notes on last week's lecture for a more extensive treatment.

Let R be an integral domain and F its field of fractions. A *fractional ideal* I of R is a finitely generated R-submodule of F such that there exists an $x \in F^{\times}$ satisfying $x \cdot I \subseteq R$. For such a fractional ideal I we define its *dual ideal* to be

$$I^* = \{ x \in F \mid x \cdot I \subseteq R \}.$$

If *I* and *J* both are fractional ideals, its *product ideal* $I \cdot J$ is given by the ideal generated by all products $i \cdot j$ for $i \in I$ and $j \in J$. That is,

$$I \cdot J = \{ \sum_{a \in A} i_a \cdot j_a \mid i_a \in I, j_a \in J, A \text{ finite } \}.$$

For example we have $I \cdot I^* \subseteq R$. If $I \cdot I^* = R$ we say that I is *invertible*.

We now specialise to R being a Dedekind domain. In this case, every non-zero fractional ideal is invertible. Hence the set of all nonzero fractional ideals of R forms an abelian group under multiplication which we denote by Frac(R). Contained in Frac(R) is a canonical subgroup, the group of *principal ideals*:

$$Prin(R) = \{ I \in Frac(R) \mid \exists x \in F^{\times} : I = x \cdot R \}.$$

The *ideal class group* of *R* is now given by the quotient

$$Cl(R) = Frac(R)/Prin(R)$$

⁰Edited by Dominik Bullach. Last time modified: 22:38 on Tuesday 29th October, 2019.

(8.1) Theorem. If *R* is either

- the integral closure \mathcal{O}_F of \mathbb{Z} in a finite field extension F of \mathbb{Q} , i. e. an *algebraic number field* F,
- or the integral closure of the polynomial ring $\mathbb{F}_p[T]$ in a finite field extension F of $\mathbb{F}_p(T)$ for a prime p, i. e. F is a *global function field*,

then Cl(R) is finite.

- **(8.2) Remark.** (1) Global function fields are exactly the coordinate rings of non-singular integral affine curves over \mathbb{F}_p . The notion "global" refers to the fact that the stalks are finite, i. e. the quotient R/\mathfrak{p} for every prime ideal $\mathfrak{p} \subseteq R$ is finite.
 - (2) The class group Cl(R) measure the failure of R to be a principle ideal domain. Since every ideal of R becomes principal after localising at a prime \mathfrak{p} , i. e. passing to the completion $F_{\mathfrak{p}}$ of F at \mathfrak{p} , the ideal class group can also be interpreted as a measurement for the failure of a local-global-principle.
 - (3) The finiteness of |Cl(R)| is a phenomenon special for the two stated situation. There are examples of Dedekind domains that have infinite ideal class group.¹
 - (4) Although being a finite abelian group, the class group is still hard to compute. Even its size (the *class number*) is only computable for extensions $F|\mathbb{Q}$ respectively $F|\mathbb{F}_p(T)$ of small degree.

Recall that the *Dedekind* ζ -function of an algebraic number field F is defined as

$$\zeta_F(s) = \sum_{\mathfrak{a}} \left| \mathcal{O}_F /_{\mathfrak{a}} \right|^{-s}, \quad \text{Re}(s) > 1,$$

where the sum ranges over all non-zero integral ideals $\mathfrak{a} \subseteq \mathcal{O}_F$. Using unique decomposition of ideals in Dedekind domains into prime ideals one can show that

$$\zeta_F(s) = \prod_{\mathfrak{p}} (1 - \left| \mathcal{O}_F/_{\mathfrak{p}} \right|^{-s})^{-1}$$

where the product now ranges over all prime ideals \mathfrak{p} of \mathcal{O}_F .

(8.3) Theorem (*analytic class number formula*²). $\zeta_F(s)$ has a meromorphic continuation to $\mathbb C$ and the leading term in the Taylor expansion of $\zeta_F(s)$ at s=0 is

$$\zeta_F^*$$
 = transcendental factor $\times |\operatorname{Cl}(\mathcal{O}_F)|$.

¹Reference specifically for Federico Bo: https://math.stackexchange.com/questions/594507/examples-of-dedekind-rings-with-infinite-class-number)

²Usually, the analytic class number formula is attributed to Dedekind. However, the full story is a bit more complicated: https://mathoverflow.net/questions/180400/history-of-the-analytic-class-number-formula

- **(8.4) Remark.** (1) The analytic class number formula is a striking theorem since it connects the local, analytic object ζ_F^* to the algebraic, global object $Cl(\mathcal{O}_F)$.
 - (2) Using the functional equation of $\zeta_F(s)$, the analytic class number formula can also equivalently be stated as a formula for the residue of $\zeta_F(s)$ at s=1.

8.2 The Weil conjectures

We now have a look at a seemingly unrelated situation with the question in mind: What is to learn from global function fields?

Let p a prime. Recall that for every $n \in \mathbb{N}$ there is a finite field \mathbb{F}_{p^n} of size p^n . The respective Galois group $\operatorname{Gal}(\mathbb{F}_{p^n}|\mathbb{F}_p)$ is cyclic of order n and admits a canonical generator, namely the *Frobenius homomorphism* σ . This homomorphism is characterised by $\sigma(x) = x^p$ for all $x \in \mathbb{F}_{p^n}$.

The algebraic closure of \mathbb{F}_p can be described as $\mathbb{F}_p^c = \bigcup_{n \in \mathbb{N}} \mathbb{F}_{p^n}$ and the absolute Galois group in this situation is

$$\operatorname{Gal}(\mathbb{F}_p^c|\mathbb{F}_p) \cong \varprojlim_n \operatorname{Gal}(\mathbb{F}_{p^n}|\mathbb{F}_p) = \varprojlim_n \mathbb{Z}/n\mathbb{Z} =: \widehat{\mathbb{Z}},$$

where $\widehat{\mathbb{Z}}$ denotes the profinite completion of \mathbb{Z} . Here the projective limit is formed with respect to the natural projection maps $\mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ for $m \mid n$.

Let X be a non-singular projective algebraic variety defined over \mathbb{F}_p and of dimension n. For every $m \in \mathbb{N}$ we denote by $N_m(X)$ the number $|X(\mathbb{F}_{p^m}|)$ of \mathbb{F}_{p^m} -rational points. In general, $N_m(X)$ is very difficult to compute in isolation. We therefore approach this problem through the respective generating function

$$Z(X,t) = \exp\left(\sum_{m\in\mathbb{N}} \frac{N_m(X)}{m} t^m\right).$$

The zeta function of X can be obtained from Z(X,t) via the substitution $t \mapsto p^{-s}$, i. e. $\zeta(X,s) = Z(X,p^{-s})$.

(8.5) Theorem (*Weil conjectures*). (1) Z(X,t) is a rational function of t. That is, there are polynomials $P_i(t) \in \mathbb{Z}[t]$ such that

$$Z(X,t) = \prod_{i=0}^{2n} P_i(t)^{(-1)^{i+1}}.$$

- (2) For $i \notin \{0, 2n\}$, these polynomials $P_i(t)$ are of the form $P_i(t) = \prod_j (1 \alpha_{ij}t)$, where the $\alpha_{ij} \in \mathbb{C}$ are complex numbers of absolute value $|\alpha_{ij}| = p^{i/2}$.
- (3) If X is the reduction mod p of a curve Y defined over an algebraic number field, the degree $P_i(t)$ equals the i-th Betti number of Y.

(8.6) Examples. (1) For $X = \mathbb{P}^1$ we have $N_m(X) = p^m + 1$ for every $m \in \mathbb{N}$. Hence

$$Z(X,t) = \frac{1}{(1-t)(1-pt)}$$

in this case.

(2) Let X be an elliptic curve defined over \mathbb{F}_p . Then $N_m(X) = 1 - \alpha^m - \beta^m + p^m$ for suitable $\alpha, \beta \in \mathbb{C}$ satisfying $\alpha = \bar{\beta}$ and $|\alpha| = p^{1/2}$. Moreover,

$$Z(X,t) = \frac{(1 - \alpha t)(1 - \beta t)}{(1 - t)(1 - \beta t)}.$$

(3) Let *X* be a curve of genus *g*. Then

$$Z(X,t) = \frac{\prod_{i=1}^{2g} (1 - \alpha_i t)}{(1 - t)(1 - pt)},$$

where the α_i are the eigenvalues of the Frobenius homomorphism σ acting on $Jac(X)(\mathbb{F}_p^c)$. Here Jac(X) denotes the Jacobian of X, i. e. the abelian variety characterised by

$$Jac(X)(k') = Pic^{0}(X_{k'}) = Div^{0}(X_{k'}) / Prin(X_{k'}) /$$

where $k'|\mathbb{F}_p$ is a field extension. Note that $|\alpha_i|=p^{1/2}$, so $\zeta(X,s)=Z(X,p^{-s})$ has zeroes solely on the "critical line" of $\mathrm{Re}(s)=\frac{1}{2}$. This is commonly known as the *Riemann hypothesis* for X.

- **(8.7) Remark.** (1) Observe that Z(X,t) being a rational function in t implies the existence of a recursive formula for the sequence $\{N_m(X)\}_{n\in\mathbb{N}}$. The rationality of Z(X,t) was proven by Dwork (1960) using p-adic analysis.
 - (2) The Riemann hypothesis for varieties was proven by Deligne (1974). The underlying of this prove is the use of *l*-adic cohomology, which was constructed precisely to prove the Weil conjectures.

For a prime $l \neq p$, the l-adic cohomology gives a finite-dimensional \mathbb{Q}_l -vector spaces $H^i(X \times_{\mathbb{F}_p} \mathbb{F}_p^c)$ upon which the Frobenius homomorphism σ_p acts. Grothen-dieck proved that

$$Z(X,t) = \prod_{i=0}^{2n} \det(1 - \sigma_p t \mid H^i(X \times_{\mathbb{F}_p} \mathbb{F}_p^c))^{(-1)^{i+1}},$$

where the as factors appearing polynomials a priori lie in $\mathbb{Q}_l[t]$ but are really elements of $\mathbb{Z}[t]$. Moreover, they do not depend on the choice of auxiliary prime l.

- **(8.8) Lessons.** (L1) Extending the field of constants gives amenable families. This extension process is really adjoining roots of unity.
- (L2) The action of the Frobenius σ_p produces explicit formulas for zeta functions.

8.3 Iwasawa theory 5

8.3 Iwasawa theory

Henceforth we consider algebraic number fields and develop Iwasawa theory as means of learning lessons (L1) and (L2).

Setup

Let p be an odd prime and form for all $n \in \mathbb{N}$ the primitive p^n -th root of unity $\xi_n = \exp(\frac{2\pi i}{n})$. By adjoining this root of unity we get a field $\mathbb{Q}(n) = \mathbb{Q}(\xi)$, the Galois group of which can be parametrised by

$$G(n) := \operatorname{Gal}(\mathbb{Q}(n)|\mathbb{Q}) \xrightarrow{\simeq} \left(\mathbb{Z}/p^n\mathbb{Z}\right)^{\times}, \quad \{\xi_n \mapsto \xi_n^a\} \mapsto [a]_{p^n}.$$

Now form $\mathbb{Q}(\infty) = \bigcup_{n \in \mathbb{N}} \mathbb{Q}(n)$. Then

$$G(\infty) := \operatorname{Gal}(\mathbb{Q}(\infty)|\mathbb{Q}) = \varprojlim_{n} \operatorname{Gal}(\mathbb{Q}(n)|\mathbb{Q})$$

$$\cong \varprojlim_{n} \left(\mathbb{Z}/p^{n}\mathbb{Z}\right)^{\times} = \mathbb{Z}_{p}^{\times} \cong \left(\mathbb{Z}/p\mathbb{Z}\right)^{\times} \times \mathbb{Z}_{p},$$

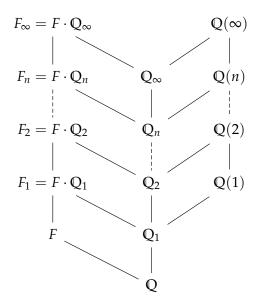
where the last isomorphism uses the fact that for every $a \in \mathbb{Z}_p$ there is a unique (p-1)-th root of unity $\omega(a) \in \mathbb{Z}_p^{\times}$ such that $a \cdot \omega(a)^{-1} \in 1 + p\mathbb{Z}_p$. The isomorphism used above can then be described as

$$\mathbb{Z}_p^{\times} \xrightarrow{\simeq} \left(\mathbb{Z}/p\mathbb{Z} \right)^{\times} \times \mathbb{Z}_p, \quad a = \omega(a) \cdot (1+p)^{y(a)} \longleftrightarrow (\omega(a), y(a)).$$

Let $\Delta = (\mathbb{Z}/p\mathbb{Z})^{\times}$ be the torsion subgroup of $G(\infty)$ and denote by $\mathbb{Q}_{\infty} = \mathbb{Q}(\infty)^{\Delta}$ the fixed field of Δ . Then by construction $Gal(\mathbb{Q}_{\infty}|\mathbb{Q}) \cong \mathbb{Z}_p$ and \mathbb{Q}_{∞} is called the *cyclotomic* \mathbb{Z}_p -*extensio*n of \mathbb{Q} . In particular, for every $n \in \mathbb{N}$ there is a unique subfield \mathbb{Q}_n of \mathbb{Q}_{∞} such that $Gal(\mathbb{Q}_n|\mathbb{Q}) \cong \mathbb{Z}/p^n\mathbb{Z}$, namely the fixed field of the subgroup $p^n\mathbb{Z}_p \subseteq \mathbb{Z}_p \cong Gal(\mathbb{Q}_{\infty}|\mathbb{Q})$.

If F is an arbitrary number field, for the sake of simplicity such that $F \cap \mathbb{Q}(\infty) = \mathbb{Q}$, we can similarly form a \mathbb{Z}_p -extension of F by setting $F_n = F \cdot \mathbb{Q}_n$. In summary, we have a diagram of the following sort:

6 8.3 Iwasawa theory



Choose a topological generator γ of $\Gamma = \operatorname{Gal}(F_{\infty}|F)$ and write $\Gamma_n = \operatorname{Gal}(F_n|F) \cong \mathbb{Z}/p^n\mathbb{Z}$. Then the restriction $\Gamma_n \to \Gamma_{n-1}$ induces a map $\pi_n \colon \mathbb{Z}_p[\Gamma_n] \to \mathbb{Z}_p[\Gamma_{n-1}]$. We can therefore give the following

(8.9) Definition. The *Iwasawa algebra* Λ is defined as $\Lambda = \varprojlim_{\pi_n} \mathbb{Z}_p[\Gamma_n]$.

It is a theorem by Serre that

$$\mathbb{Z}_p[\![T]\!] \to \Lambda$$
, $1+T \mapsto (\gamma_{|F_n})_{n \in \mathbb{N}}$

is an isomorphism. From this we can deduce that Λ is a regular ring of Krull dimension 2 and the prime ideals of Λ uniquely correspond to (0), (p), (p, T), (f(T)), where $f(T) \in \mathbb{Z}_p[T]$ is irreducible and *distinguished*, i. e. $f(T) \equiv T^{\deg f} \mod p$.

Λ -modules

Let $(X_n)_{n\in\mathbb{N}}$ denote a compatible family of $\mathbb{Z}_p[\Gamma_n]$ -modules, that is for every $n\in\mathbb{N}$ there is a commutative diagram

$$X_{n} \xrightarrow{\pi_{n}} X_{n-1}$$

$$\downarrow^{\cdot \gamma_{|F_{n}}} \qquad \downarrow^{\cdot \gamma_{|F_{n}}}$$

$$X_{n} \xrightarrow{\pi_{n}} X_{n-1}$$

In this case we can obtain a Λ -module by forming $X = \varprojlim_n X_n$.

The advantage of studying the Λ -module X instead of the $\mathbb{Z}_p[\Gamma_n]$ -modules X_n on its own is that Λ -modules admit a very nice representation theory whereas the representation theory of $\mathbb{Z}_p[\Gamma_n]$ -modules is quite ugly.

8.3 Iwasawa theory 7

(8.10) Theorem (*structure theorem for finitely generated* Λ -modules). Let M be a finitely generated Λ -module. Then there exist unique integers r, s, t, l_j, m_i and irreducible distinguished polynomials f_i such that there is an exact sequence

$$0 \to \text{(finite)} \to M \to \Lambda^r \oplus \bigoplus_{i=1}^s \Lambda / (p^{m_i}) \oplus \bigoplus_{j=1}^t \Lambda / (f_j^{l_j}) \to \text{ (finite)} \to 0$$

The uniqueness statement in the theorem allows us to define the following invariants of *M*:

- rk(M) = r, notice that M is a torsion module if and only if r = 0.,
- $\mu(M) = \sum_{i=1}^s m_i$
- $\lambda(M) = \sum_{j=1}^t l_j \deg(f_j)$, observe that $\lambda(M) = \dim_{\mathbb{Q}_p}(\mathbb{Q}_p \otimes_{\mathbb{Z}} M)$ if M is torsion,
- $\operatorname{char}_{\gamma}(M) = p^{\mu(M)} \prod_{j} f_{j}^{l_{j}}$, where $\operatorname{char}_{\gamma}(M) = p^{\mu(M)} \cdot \det(tI X \mid M \otimes \mathbb{Q}_{p})$ if r = 0, i. e. in this case the characteristic polynomial of the indeterminate X on $M \otimes \mathbb{Q}_{p}$ appears.

Also, we have the following:

- (FG) M is a finitely generated Λ -module if and only if $M/(p,T) \cdot M$ is finite,
- (Tor) If M is finitely generated, then M is torsion if and only if $M/\nu_{n,e}M$ is finite for all n, where

$$u_{n,e} = \sum_{i=0}^{p^{n-e}-1} (\gamma^{p^e})^i \in \Lambda.$$

(Rec) If M is a finitely generated torsion Λ -module, there exists $\nu \in \mathbb{N}_0$ such that

$$\left| M/_{\nu_{n,e}} M \right| = p^{\mu(M)p^n + \lambda(M) + \nu} \quad \text{ for } n >> 0.$$

We now apply this algebraic theory to a concrete module. For every field F_n as above let A_{F_n} denote the p-Sylow group of $Cl(\mathcal{O}_{F_n})$. The Norm maps

$$N_{F_n|F_{n-1}}\colon F_n\to F_{n-1},\quad x\mapsto \prod_{\sigma\in\operatorname{Gal}(F_n|F_{n-1})}\sigma(x)$$

also induces maps $A_{F_n} \to A_{F_{n-1}}$ which we can use to form $M = \varprojlim A_{F_n}$.

As a consequence of the above representation theory we get

(8.11) Theorem (Iwasawa, 50s). For *n* large enough we have that

$$|A_{F_n}|=p^{\mu p^n+\lambda n+\nu}.$$

Furthermore, it is conjectured that $\mu = 0$. This means that class groups do not "grow too fast".

Iwasawa Main Conjecture

To consider lesson (L2), we now restrict to $F = \mathbb{Q}$. Let $f \in \mathbb{N}$ and let $\chi \colon (\mathbb{Z}/f\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ be a Dirichlet character of conductor f. Then the L-series associated to χ is given by

$$L(\chi, s) = \sum_{n \in \mathbb{N}} \frac{\chi(n)}{n^s}, \quad \text{Re}(s) > 1,$$

where $\chi(n) = 0$ if $(n, f) \neq 1$. One can show that $L(\chi, s)$ has a holomorphic continuation to \mathbb{C} and satisfies

$$L(\chi, 1-n) = -\frac{B_{n,\chi}}{n} \in \mathbb{Q}^c \quad \text{for } n \in \mathbb{N},$$

where $B_{n,\chi}$ denote the *generalised Bernoulli-numbers*. These are characterised by

$$\sum_{n=0}^{\infty} B_{n,\chi} \frac{t^n}{n} = \sum_{a=1}^{f} \frac{\chi(a) t e^{a^t}}{e^{ft} - 1}.$$

(8.12) Example. For $f=1=\chi$ the *L*-function coincides with the Riemann ζ -function: $L(\chi,s)=\zeta_{\mathbb{Q}}(s)$. In this case $B_{n,\chi}=B_n$ are the classical Bernoulli numbers.

We also have the so-called "Kummer congruences": For $m, n \in \mathbb{N}$ and $m \equiv n \not\equiv 0$ mod (p-1) the congruence

$$\frac{B_m}{m} \equiv \frac{B_n}{n} \mod p$$

holds. This may be interpreted as "*L*-values behave in some sense *p*-adically continously" and one might ask whether these arise as values of a *p*-adic function.

(8.13) Theorem (Kubota-Leopoldt). There is a p-adic meromorphic function $L_p(s,\chi)$ on $\{s \in \mathbb{Z}_p \mid |s|_p \le p^{1-\frac{1}{p-1}}\}$ such that for all $n \in \mathbb{N}$ the function $L_p(s,\chi)$ interpolates $L(1-n,\chi)$ up to some fudge factors.

It is a fact that there exists $f_{\gamma,\chi} \in \Lambda$ such that roughly $L_p(s,\chi) = f_{\gamma,\chi}(\kappa^s - 1)$ for $\kappa \in 1 + p\mathbb{Z}_p$ and $\gamma(\zeta_n) = \zeta_n^{\kappa}$.

8.3 Iwasawa theory 9

Similar to the analytic class number formula, the Kubota-Leopold L-function is going to be the analytic side of a formula connecting it to an algebraic object. To construct the latter, let L_n be the maximal unramified abelian extension of \mathbb{Q}_n of p-power degree. Define $L_\infty = \bigcup_{n \in \mathbb{N}} L_n$ and consider $X_\infty = \operatorname{Gal}(L_\infty | \mathbb{Q}_\infty)$.

Now X_∞ admits a *Γ*-action in the following way: Choose an extension $\tilde{\gamma}$ of $\gamma \in \Gamma$ to L_∞ , i. e. a lift in $Gal(L_\infty|\mathbb{Q})$. Then

$$\gamma \cdot x = \tilde{\gamma} x (\tilde{\gamma})^{-1}$$

defines a well-defined action of Γ on X_{∞} . This can be linearly (and continuously) extended to an action of Λ .

Observe that $X_n = \operatorname{Gal}(L_n|\mathbb{Q}_{\infty}) \cong A_{F_n}$ by class field theory. Iwasawa showed that X_{∞} is a finitely generated torsion Λ -module.

(8.14) Theorem (Iwasawa Main Conjecture).

$$char(\chi \text{ component of } X_{\infty}) = \text{ unit } \times f_{\gamma,\chi}.$$

The Iwasawa Main conjecture was proven for Q by Mazur-Wiles (1984) and for totally real fields by Wiles (1990).

An analogous Main Conjectures exists also for elliptic curves. This conjecture is however only proven for a small number of very special cases and a proof would imply the *p*-part of the Birch-Swinnerton-Dyer Conjecture.